By Topic

BIC-Based Speaker Segmentation Using Divide-and-Conquer Strategies With Application to Speaker Diarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng, Shih-Sian ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Hsin-Min Wang ; Hsin-Chia Fu

In this paper, we propose three divide-and-conquer approaches for Bayesian information criterion (BlC)-based speaker segmentation. The approaches detect speaker changes by recursively partitioning a large analysis window into two sub-windows and recursively verifying the merging of two adjacent audio segments using DeltaBIC, a widely-adopted distance measure of two audio segments. We compare our approaches to three popular distance-based approaches, namely, Chen and Gopalakrishnan's window-growing-based approach, Siegler et al.'s fixed-size sliding window approach, and Delacourt and Wellekens's DISTBIC approach, by performing computational cost analysis and conducting speaker change detection experiments on two broadcast news data sets. The results show that the proposed approaches are more efficient and achieve higher segmentation accuracy than the compared distance-based approaches. In addition, we apply the segmentation approaches discussed in this paper to the speaker diarization task. The experiment results show that a more effective segmentation approach leads to better diarization accuracy.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 1 )
Biometrics Compendium, IEEE