By Topic

An Innovative Multiresolution Approach for DOA Estimation Based on a Support Vector Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donelli, M. ; Dept. of Inf. & Commun. Technol., Univ. of Trento, Trento, Italy ; Viani, F. ; Rocca, P. ; Massa, A.

The knowledge of the directions of arrival (DOAs) of the signals impinging on an antenna receiver enables the use of adaptive control algorithm suitable for limiting the effects of interferences and increasing the gain towards the desired signals in order to improve the performances of wireless communication systems. In this paper, an innovative multi-resolution approach for the real-time DOA estimation of multiple signals impinging on a planar array is presented. The method is based on a support vector classifier and it exploits a multi-scaling procedure to enhance the angular resolution of the detection process in the regions of incidence of the incoming waves. The data acquired from the array sensors are iteratively processed with a support vector machine (SVM) customized to the problem at hand. The final result is the definition of a map of the probability that a signal impinges on the antenna from a fixed angular direction. Selected numerical results, concerned with both single and multiple signals, are provided to assess potentialities and current limitations of the proposed approach.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 8 )