By Topic

A High-Efficiency High Step-Up Converter With Low Switch Voltage Stress for Fuel-Cell System Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Tsai Pan ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Ching-Ming Lai

In this paper, a novel high step-up converter is proposed for fuel-cell system applications. As an illustration, a two-phase version configuration is given for demonstration. First, an interleaved structure is adapted for reducing input and output ripples. Then, a C??uk-type converter is integrated to the first phase to achieve a much higher voltage conversion ratio and avoid operating at extreme duty ratio. In addition, additional capacitors are added as voltage dividers for the two phases for reducing the voltage stress of active switches and diodes, which enables one to adopt lower voltage rating devices to further reduce both switching and conduction losses. Furthermore, the corresponding model is also derived, and analysis of the steady-state characteristic is made to show the merits of the proposed converter. Finally, a 200-W rating prototype system is also constructed to verify the effectiveness of the proposed converter. It is seen that an efficiency of 93.3% can be achieved when the output power is 150-W and the output voltage is 200-V with 0.56 duty ratio.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 6 )