By Topic

Sliding-Mode Output-Feedback Control Based on LMIs for Plants With Mismatched Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andrade-Da Silva, J.M. ; Dept. of Eng., Univ. of Leicester, Leicester, UK ; Edwards, C. ; Spurgeon, S.K.

In this paper, a design framework for synthesizing sliding-mode output-feedback controllers for plants with matched and mismatched uncertainties is presented. Static-output-feedback (SOF) and compensator-based sliding-mode controllers are proposed. The switching-surface design problem is formulated in terms of linear matrix inequalities (LMIs) from a polytopic perspective, as an SOF problem with mismatched uncertainties. The control law consists of linear and nonlinear components. A convex subset of the complex left half-plane is defined by the designer in order to place the closed-loop eigenvalues when synthesizing numerically the linear component using LMIs through a polytopic formulation. The nonlinear part takes into account matched uncertainties or nonlinearities. Design studies demonstrate the efficacy of the proposed controllers.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 9 )