Cart (Loading....) | Create Account
Close category search window
 

Conformal image warping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frederick, C. ; Dept. of Psychiatry, New York Univ. Sch. of Med., NY, USA ; Schwartz, E.L.

Numerical and computer-graphic methods for conformal image mapping between two simply connected regions are described. The immediate motivation for this application is that the visual field is represented in the brain by mappings which are, at least approximately, conformal. Thus, to simulate the imaging properties of the human visual system (and perhaps other sensory systems), conformal image mapping is a necessary technique. For generating the conformal map, a method for analytic mappings and an implementation of the Symm algorithm for numerical conformal mapping are shown. The first method evaluates the inverse mapping function at each pixel of the range, with antialiasing by multiresolution texture prefiltering and bilinear interpolation. The second method is based on constructing a piecewise affine approximation of the mapping in the form of a joint triangulation, or triangulation map, in which only the nodes of the triangulation are conformally mapped. The texture is then mapped by a local affine transformation on each pixel of the range triangulation with the same antialiasing used in the first method. The algorithms are illustrated with examples of conformal mappings constructed analytically from elementary mappings, such as the linear fractional map, the complex algorithm, etc. Applications of numerically generated maps between highly irregular regions and an example of the visual field mapping that motivates this work are also shown.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:10 ,  Issue: 2 )

Date of Publication:

March 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.