By Topic

Selecting Suitable Coherent Processing Time Window Lengths for Ground-Based ISAR Imaging of Cooperative Sea Vessels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Y. Abdul Gaffar ; Radar & Electron. Warfare, Council for Sci. & Ind. Res., Pretoria, South Africa ; W. A. J. Nel ; M. R. Inggs

Inverse synthetic aperture radar (ISAR) imaging of sea vessels is a challenging task because their 3-D rotational motion over the coherent processing interval (CPI) often leads to blurred images. The selection of the duration of the CPI, also known as the coherent processing time window length (CPTWL), is critical because it should be short enough to limit the blurring caused by the 3-D rotational motion and long enough to ensure that the desired cross-range resolution is obtained. This paper proposes an algorithm, referred to as the motion-aided CPTWL selector (MACS) algorithm, which selects suitable CPTWLs for ISAR imaging of cooperative sea vessels. The suggested CPTWLs may be used to obtain motion-compensated ISAR images that have the desired medium cross-range resolution and limited blurring due to 3-D rotational motion. The proposed algorithm is applied to measured motion data of three different classes of sea vessels: a yacht, a fishing trawler, and a survey vessel. Results show that longer CPTWLs are needed for larger vessels in order to obtain ISAR images with the desired cross-range resolution. The effectiveness of the CPTWLs, suggested by the MACS algorithm, is shown using measured radar data. The suggested CPTWLs may also be used to select an effective initial CPTWL for Martorella/Berizzi's optimum imaging selection algorithm when it is applied to measured radar data of small vessels. Lastly, the proposed technique offers significant computational savings for radar cross section measurement applications where a few high-quality ISAR images are desired from long radar recordings.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:47 ,  Issue: 9 )