By Topic

Design Study of 10 kW Superconducting Generator for Wind Turbine Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Abrahamsen, A.B. ; Mater. Res. Div., Tech. Univ. of Denmark, Roskilde, Denmark ; Mijatovic, N. ; Seiler, E. ; Sorensen, M.P.
more authors

We have performed a design study of a 10 kW superconducting slow rotating generator suitable for demonstration in a small scale wind turbine, where the drive train only consists of the turbine blades connected directly to the generator. The flux density in the superconducting rotor is chosen as B = 1 Tesla to be similar to the performance of permanent magnets and to represent a layout, which can be scaled up in future off-shore wind turbines. The proposed generator is a 8 pole synchronous machine based on race-track coils of high temperature superconducting tapes and an air cored copper stator enclosed in an iron shield.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:19 ,  Issue: 3 )