By Topic

New EMTP-RV Equivalent Circuit Model of Core-Shielding Superconducting Fault Current Limiter Taking Into Account the Flux Diffusion Phenomenon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mouhamadou Dione ; Ecole Polytech. de Montreal, Montreal, QC, Canada ; FrÉdÉric Sirois ; Francesco Grilli ; Jean Mahseredjian

In order to successfully integrate superconducting fault current limiters (SFCL) into electric power system networks, accurate and fast simulation models are needed. This led us to develop a generic electric circuit model of an inductive SFCL, which we implemented in the EMTP-RV software. The selected SFCL is of shielded-core type, i.e. a HTS hollow cylinder surrounds the central leg of a magnetic core, and is located inside a primary copper winding, generating an AC magnetic field proportional to the line current. The model accounts for the highly nonlinear flux diffusion phenomenon across the superconducting cylinder, governed by the Maxwell equations and the non-linear E-J relationship of HTS materials. The computational efficiency and simplicity of this model resides in a judicious 1-D approximation of the geometry, together with the use of an equivalent electric circuit that reproduces accurately the actual magnetic behavior for the flux density (B) inside the walls of the HTS cylinder. The HTS properties are not restricted to the simple power law model, but instead, any resistivity function depending on J, B and T can be used and inserted directly in the model through a non-linear resistance appearing in the equivalent circuit.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:19 ,  Issue: 3 )