By Topic

An Efficient 4-D 8PSK TCM Decoder Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinjin He ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR, USA ; Zhongfeng Wang ; Huping Liu

This paper presents an efficient architecture for a 4-D eight-phase-shift-keying trellis-coded-modulation (TCM) decoder. First, a low-complexity architecture for the transition metric unit is proposed based on substructure sharing. This scheme significantly reduces the required computation without degrading the performance. Then, a new hybrid T -algorithm for a Viterbi decoder is developed by applying a T-algorithm on both branch metrics (BMs) and path metrics (PMs). TCM encoders usually employ high-rate convolutional codes that yield many more transition paths per state than low-rate codes do. This makes it feasible to purge unnecessary additions by applying the T -algorithm on BMs. Applying the T-algorithm on BMs instead of PMs allows one to move the ??search-for-the-optimal?? operation out of the add-compare-select-unit (ACSU) loop. Hence, the clock speed will not be affected. In addition, by combining the T-algorithm on BMs and the T-algorithm on PMs, the hybrid T -algorithm can reduce the computations required with the conventional T-algorithm on PMs by as much as 50%.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )