By Topic

Configuration Locking and Schedulability Estimation for Reduced Reconfiguration Overheads of Reconfigurable Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalra, R. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Lysecky, R.

Dynamically reconfigurable field-programmable gate arrays (FPGAs) hold the promise of providing a virtual hardware resource in which hardware circuits can be dynamically scheduled onto the available FPGA resources. However, reconfiguring an FPGA can incur significant performance and energy overheads. This paper analyzes the relationship between several hardware task scheduling algorithms and their impact on the number of reconfigurations required to execute a set of hardware tasks. In addition, three new hardware scheduling algorithms, specifically designed to reduce the number of required reconfigurations, are presented and analyzed. By selectively locking configurations within the reconfigurable tiles of an FPGA, significant reductions in the number of required reconfiguration can be achieved.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )