Cart (Loading....) | Create Account
Close category search window

Configuration Locking and Schedulability Estimation for Reduced Reconfiguration Overheads of Reconfigurable Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalra, R. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Lysecky, R.

Dynamically reconfigurable field-programmable gate arrays (FPGAs) hold the promise of providing a virtual hardware resource in which hardware circuits can be dynamically scheduled onto the available FPGA resources. However, reconfiguring an FPGA can incur significant performance and energy overheads. This paper analyzes the relationship between several hardware task scheduling algorithms and their impact on the number of reconfigurations required to execute a set of hardware tasks. In addition, three new hardware scheduling algorithms, specifically designed to reduce the number of required reconfigurations, are presented and analyzed. By selectively locking configurations within the reconfigurable tiles of an FPGA, significant reductions in the number of required reconfiguration can be achieved.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.