By Topic

Miniaturized Bandpass Filters With Double-Folded Substrate Integrated Waveguide Resonators in LTCC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hung-Yi Chien ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Tze-Min Shen ; Huang, Ting-Yi ; Wei-Hsin Wang
more authors

This paper proposes miniaturized bandpass filters with double-folded substrate integrated waveguide (SIW) resonators using multilayer low-temperature co-fired ceramic (LTCC) technology. Formed by inserting a metal plate with two orthogonal slots into the cavity, the double-folded SIW resonator is used for the circuit size reduction with its footprint about a quarter of the conventional TE101 mode. With LTCC technology, there is more flexibility to organize the cavities of filters because of the 3-D arrangement. The vertically stacked cavities are coupled by ldquoLrdquo- or ldquoUrdquo-shaped slots, and if arranged horizontally, by an inductive window on the common sidewall or a suspended stripline between the cavities. Through experimental measurements and simulations at both the Ka- V -bands, it has been demonstrated that the proposed filter has compact sizes and good frequency responses. The area of the fully stacked Chebyshev filter has 88% size reduction in comparison with a three-pole planar waveguide filter, while the vertically stacked quasi-elliptic filter has 74% size reduction in comparison with a four-pole planar waveguide filter.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 7 )