By Topic

Packet synchronization for synchronous optical deflection-routed interconnection networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feehrer, J.R. ; Hewlett-Packard Co., Fort Collins, CO, USA ; Ramfelt, L.H.

Deflection routing resolves output port contention in packet switched multiprocessor interconnection networks by granting the preferred port to the highest priority packet and directing contending packets out other ports. When combined with optical links and switches, deflection routing yields simple bufferless nodes, high bit rates, scalable throughput, and low latency. We discuss the problem of packet synchronization in synchronous optical deflection networks with nodes distributed across boards, racks, and cabinets. Synchronous operation is feasible due to very predictable optical propagation delays. A routing control processor at each node examines arriving packets and assigns them to output ports. Packets arriving on different input ports must be bit wise aligned; there are no elastic buffers to correct for mismatched arrivals. “Time of flight” packet synchronization is done by balancing link delays during network design. Using a directed graph network model, we formulate a constrained minimization problem for minimizing link delays subject to synchronization and packaging constraints. We demonstrate our method on a ShuffleNet graph, and show modifications to handle multiple packet sizes and latency critical paths

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 6 )