By Topic

Multiple RFID Tags Access Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weilian Su ; Dept. of Electr. & Comput. Eng., Naval Postgrad. Sch., Monterey, CA, USA ; Alchazidis, N. ; Ha, T.T.

One of the main problems that affect the data integrity of passive RFID systems is the collision between the tags. A popular anticollision algorithm which dominates the standards in HF and UHF passive RFID systems is framed slotted Aloha (FSA) and some variations of FSA. Throughput and average time delay of the RFID system which determines the performance/efficiency of the system are reduced rapidly when the number of tags inside the interrogation zone is increased. Using larger frame sizes is not always the solution. This paper discusses and compares the existing protocols, and proposes a variation of FSA, called progressing scanning (PS) algorithm. The PS algorithm divides the tags in the interrogation zone into smaller groups and gives the reader the ability to communicate with each of them. For performance analysis, the PS algorithm was evaluated with the parameters of a typical passive RFID system at 2.5 GHz. The results showed that the PS algorithm can improve the efficiency of the RFID system and provide a reliable solution for cases with a high density of tags in the area (over 800 tags).

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 2 )