Cart (Loading....) | Create Account
Close category search window
 

Relay Node Deployment Strategies in Heterogeneous Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kenan Xu ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON, Canada ; Hassanein, H. ; Takahara, G. ; Quanhong Wang

In a heterogeneous wireless sensor network (WSN), relay nodes (RNs) are adopted to relay data packets from sensor nodes (SNs) to the base station (BS). The deployment of the RNs can have a significant impact on connectivity and lifetime of a WSN system. This paper studies the effects of random deployment strategies. We first discuss the biased energy consumption rate problem associated with uniform random deployment. This problem leads to insufficient energy utilization and shortened network lifetime. To overcome this problem, we propose two new random deployment strategies, namely, the lifetime-oriented deployment and hybrid deployment. The former solely aims at balancing the energy consumption rates of RNs across the network, thus extending the system lifetime. However, this deployment scheme may not provide sufficient connectivity to SNs when the given number of RNs is relatively small. The latter reconciles the concerns of connectivity and lifetime extension. Both single-hop and multihop communication models are considered in this paper. With a combination of theoretical analysis and simulated evaluation, this study explores the trade-off between connectivity and lifetime extension in the problem of RN deployment. It also provides a guideline for efficient deployment of RNs in a large-scale heterogeneous WSN.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.