By Topic

Superseding Nearest Neighbor Search on Uncertain Spatial Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sze Man Yuen ; Chinese University of Hong Kong, Hong Kong ; Yufei Tao ; Xiaokui Xiao ; Jian Pei
more authors

This paper proposes a new problem, called superseding nearest neighbor search, on uncertain spatial databases, where each object is described by a multidimensional probability density function. Given a query point q, an object is a nearest neighbor (NN) candidate if it has a nonzero probability to be the NN of q. Given two NN-candidates o1 and o2, o1 supersedes o2 if o1 is more likely to be closer to q. An object is a superseding nearest neighbor (SNN) of q, if it supersedes all the other NN-candidates. Sometimes no object is able to supersede every other NN-candidate. In this case, we return the SNN-core-the minimum set of NN-candidates each of which supersedes all the NN-candidates outside the SNN-core. Intuitively, the SNN-core contains the best objects, because any object outside the SNN-core is worse than all the objects in the SNN-core. We show that the SNN-core can be efficiently computed by utilizing a conventional multidimensional index, as confirmed by extensive experiments.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 7 )