By Topic

An UpDown Directed Acyclic Graph Approach for Sequential Pattern Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jinlin Chen ; Comput. Sci. Dept., City Univ. of New York, Flushing, NY, USA

Traditional pattern growth-based approaches for sequential pattern mining derive length-(k+1) patterns based on the projected databases of length-k patterns recursively. At each level of recursion, they unidirectionally grow the length of detected patterns by one along the suffix of detected patterns, which needs k levels of recursion to find a length-k pattern. In this paper, a novel data structure, UpDown Directed Acyclic Graph (UDDAG), is invented for efficient sequential pattern mining. UDDAG allows bidirectional pattern growth along both ends of detected patterns. Thus, a length-k pattern can be detected in [log2k + 1] levels of recursion at best, which results in fewer levels of recursion and faster pattern growth. When minSup is large such that the average pattern length is close to 1, UDDAG and PrefixSpan have similar performance because the problem degrades into frequent item counting problem. However, UDDAG scales up much better. It often outperforms PrefixSpan by almost one order of magnitude in scalability tests. UDDAG is also considerably faster than Spade and LapinSpam. Except for extreme cases, UDDAG uses comparable memory to that of PrefixSpan and less memory than Spade and LapinSpam. Additionally, the special feature of UDDAG enables its extension toward applications involving searching in large spaces.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 7 )