By Topic

The analysis of the fault currents according to core saturation and fault angles in an inductive high-Tc superconducting fault current limiter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minseok Joo ; Dept. of Electr. Eng., Yonsei Univ., Seoul, South Korea ; Tae Kuk Ko

In this paper, we investigate the fault currents in an inductive high-Tc superconducting fault current limiter (SFCL). The currents can cause serious damage to the reliability and stability of the power system. To analyze the transient fault characteristics of the SFCL, we fabricated an inductive high-Tc SFCL and tested it under different fault conditions. To simulate a fault condition, a fault angle controller was connected to a load. As the firing angle of the triac in the fault angle controller was controlled, various angles of the fault instant can be selected. An important parameter for the design and the fabrication of the SFCL is the reduction of the fault currents. If abnormally high currents due to low impedance of SFCL do not occur in the network with SFCL, the currents flowing under fault conditions can be limited to a desired value within one cycle. The fault current reduction depends on saturation, normal zone propagation velocity, turns ratio, and the fault angle (the instant of the fault occurrence within a cycle).

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:6 ,  Issue: 2 )