By Topic

Reliable online human signature verification systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, L.L. ; Fac. of Electr. Eng., DECOM-FEE-UNICAMP, Campinos, Brazil ; Berger, T. ; Aviczer, E.

Online dynamic signature verification systems were designed and tested. A database of more than 10,000 signatures in (x(t), y(t))-form was acquired using a graphics tablet. We extracted a 42-parameter feature set at first, and advanced to a set of 49 normalized features that tolerate inconsistencies in genuine signatures while retaining the power to discriminate against forgeries. We studied algorithms for selecting and perhaps orthogonalizing features in accordance with the availability of training data and the level of system complexity. For decision making we studied several classifiers types. A modified version of our majority classifier yielded 2.5% equal error rate and, more importantly, an asymptotic performance of 7% false acceptance rate at zero false rejection rate, was robust to the speed of genuine signatures, and used only 15 parameter features

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 6 )