Cart (Loading....) | Create Account
Close category search window

On the nature of quantum dash structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Dery, H. ; Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel ; Benisty, E. ; Epstein, A. ; Alizon, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We describe a theoretical model for the linear optical gain properties of a quantum wire assembly and compare it to the well known case of a quantum dot assembly. We also present a technique to analyze the gain of an optical amplifier using bias dependent room temperature amplified spontaneous emission spectra. Employing this procedure in conjunction with the theoretical gain model, we demonstrate that InAs/InP quantum dash structures have quantum-wire-like characteristics. The procedure was used to extract the net gain coefficient, the differential gain, and the relative current component contributing to radiative recombination. © 2004 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:95 ,  Issue: 11 )

Date of Publication:

Jun 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.