Cart (Loading....) | Create Account
Close category search window

Early stage of plastic deformation in thin films undergoing electromigration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Valek, B.C. ; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 ; Tamura, N. ; Spolenak, R. ; Caldwell, W.A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Electromigration occurs when a high current density drives atomic motion from the cathode to the anode end of a conductor, such as a metal interconnect line in an integrated circuit. While electromigration eventually causes macroscopic damage, in the form of voids and hillocks, the earliest stage of the process when the stress in individual micron-sized grains is still building up is largely unexplored. Using synchrotron-based x-ray microdiffraction during an in-situ electromigration experiment, we have discovered an early prefailure mode of plastic deformation involving preferential dislocation generation and motion and the formation of a subgrain structure within individual grains of a passivated Al (Cu) interconnect. This behavior occurs long before macroscopic damage (hillocks and voids) is observed. © 2003 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:94 ,  Issue: 6 )

Date of Publication:

Sep 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.