Cart (Loading....) | Create Account
Close category search window
 

Dynamic observation of needle-plane surface-discharge using the electro-optical Pockels effect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhu, Y. ; Meas. Lab., Musashi Inst. of Technol., Tokyo, Japan ; Takada, Tatsuo ; Inoue, Y. ; Tu, D.

Dynamic observation of surface charge distribution is the main advantage of the electro-optical Pockels effect technique over the dust figure technique, the photographic Lichtenberg figure technique, and the static potential probe scanning method. This technique is demonstrated here to observe the surface charge distribution deposited by partial discharge during application of one period of an 8 kV sinusoidal voltage to a needle-dielectric plane electrode system with zero gap spacing. Polarity effect and backdischarge are prominent in ac surface discharges. The observed polarity effect in the charge pattern shows that if the dielectric surface is initially free of surface charge, positive `streamer' channels burst out intermittently and radially from the needle tip resulting in a spoke-like surface charge distribution, while negative streamers expand almost uniformly in all radial directions resulting in a nearly circular surface charge distribution. This behavior results in quasi-permanent positive surface charges. Residual negative surface charge from prior discharges has a considerable influence on the trajectory of subsequent positive streamer discharges, i.e. causing deviation of positive streamer channels from the radial direction; whereas residual positive surface charge has little influence on the radial development of surface charge from subsequent negative discharges. This measurement technique has a potential for widespread application in investigating the dynamics of surface charging phenomena

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:3 ,  Issue: 3 )

Date of Publication:

Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.