Cart (Loading....) | Create Account
Close category search window
 

A Social Network Based Patching Scheme for Worm Containment in Cellular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhichao Zhu ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA ; Guohong Cao ; Sencun Zhu ; Ranjan, S.
more authors

Recently, cellular phone networks have begun allowing third-party applications to run over certain open-API phone operating systems such as Windows Mobile, Iphone and Google's Android platform. However, with this increased openness, the fear of rogue programs written to propagate from one phone to another becomes ever more real. This paper proposes a counter-mechanism to contain the propagation of a mobile worm at the earliest stage by patching an optimal set of selected phones. The counter-mechanism continually extracts a social relationship graph between mobile phones via an analysis of the network traffic. As people are more likely to open and download content that they receive from friends, this social relationship graph is representative of the most likely propagation path of a mobile worm. The counter mechanism partitions the social relationship graph via two different algorithms, balanced and clustered partitioning and selects an optimal set of phones to be patched first as those which have the capability to infect the most number of other phones. The performance of these partitioning algorithms is compared against a benchmark random partitioning scheme. Through extensive trace-driven experiments using real IP packet traces from one of the largest cellular networks in the US, we demonstrate the efficacy of our proposed counter-mechanism in containing a mobile worm.

Published in:

INFOCOM 2009, IEEE

Date of Conference:

19-25 April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.