By Topic

Time Valid One-Time Signature for Time-Critical Multicast Data Authentication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiyan Wang ; Univ. of Illinois at Urbana-Champaign, Champaign, IL ; Khurana, H. ; Ying Huang ; Nahrstedt, K.

It is challenging to provide authentication to time-critical multicast data, where low end-to-end delay is of crucial importance. Consequently, it requires not only efficient authentication algorithms to minimize computational cost, but also avoidance of buffering packets so that the data can be immediately processed once being presented. Desirable properties for a multicast authentication scheme also include small communication overhead, tolerance to packet loss, and resistance against malicious attacks. In this paper, we propose a novel signature model - Time Valid One-Time Signature (TV-OTS) - to boost the efficiency of regular one-time signature schemes. Based on the TV-OTS model, we design an efficient multicast authentication scheme "TV-HORS" to meet the above needs. TV-HORS combines one-way hash chains with TV-OTS to avoid frequent public key distribution. It provides fast signing/verification and buffering-free data processing, which make it one of the fastest multicast authentication schemes to date in terms of end-to-end computational latency (on the order of microseconds). In addition, TV-HORS has perfect tolerance to packet loss and strong robustness against malicious attacks. The communication overhead of TV-HORS is much smaller than regular OTS schemes, and even smaller than RSA signature. The only drawback of TV-HORS is a relatively large public key of size 8 KB to 10 KB, depending on parameters.

Published in:


Date of Conference:

19-25 April 2009