By Topic

Coping with discontinuities in computer vision: their detection, classification, and measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Lee ; AT&T Bell Lab., Murray Hill, NJ, USA

The general principles of detection, classification, and measurement of discontinuities are studied. The following issues are discussed: detecting the location of discontinuities; classifying discontinuities by their degrees; measuring the size of discontinuities; and coping with the random noise and designing optimal discontinuity detectors. An algorithm is proposed for discontinuity detection from an input signal S. For degree k discontinuity detection and measurement, a detector (P,Φ) is used, where P is the pattern and Φ is the corresponding filter. If there is a degree k discontinuity at location t0, then in the filter response there is a scaled pattern αP at t0, where α is the size of the discontinuity. This reduces the problem to searching for the scaled pattern in the filter response. A statistical method is proposed for the approximate pattern matching. To cope with the random noise, a study is made of optimal detectors, which minimize the effects of noise

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:12 ,  Issue: 4 )