Cart (Loading....) | Create Account
Close category search window
 

Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shi, L.P. ; Data Storage Institute, DSI Building, 5 Engineering Drive 1 (off 10 Kent Ridge Crescent, NUS), 117608, Singapore ; Chong, T.C. ; Yao, H.B. ; Tan, P.K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1476068 

A structure of super-resolution near-field phase-change optical disk with localized surface plasmon coupling effect is proposed. A localized surface plasmon coupling layer (LSPCL) was introduced to form a coupled localized surface plasmons (CLSP) with the mask layer. Recording marks as small as 31 and 36 nm were observed in two structures, which were both much smaller than the smallest mark of 56 nm observed from the conventional one without LSPCL. CLSP not only can reduce mark size but it can also improve carrier-to-noise ratio of recording marks. The thermal stability of the disk was also studied. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 12 )

Date of Publication:

Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.