By Topic

The Bispectrum and Bicoherence for Quadratically Nonlinear Systems Subject to Non-Gaussian Inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jonathan M. Nichols ; U.S. Naval Res. Lab., Washington, DC, USA ; Colin C. Olson ; Joseph V. Michalowicz ; Frank Bucholtz

In the analysis of data from nonlinear systems both the bispectrum and the bicoherence have emerged as useful tools. Both are frequently used to detect the influence of a nonlinear system on the joint probability distribution of the system input. Previous work has provided an analytical expression for the bispectrum of a quadratically nonlinear system output if the input is stationary, jointly Gaussian distributed. This work significantly generalizes the previous analysis by providing an analytical expression for the bispectrum of the response of quadratically nonlinear systems subject to stationary, jointly non-Gaussian inputs possessing arbitrary auto-correlation function. The expression is then used to determine the optimal input probability density function for detecting a quadratic nonlinearity in a second-order system. It is also shown how the expression can be used to design an optimal nonlinear filter for detecting deviations from normality in the probability density of a signal.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 10 )