By Topic

Neural Decoding of Hand Motion Using a Linear State-Space Model With Hidden States

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Wu ; Dept. of Stat., Florida State Univ., Tallahassee, FL, USA ; Kulkarni, J.E. ; Hatsopoulos, N.G. ; Paninski, L.

The Kalman filter has been proposed as a model to decode neural activity measured from the motor cortex in order to obtain real-time estimates of hand motion in behavioral neurophysiological experiments. However, currently used linear state-space models underlying the Kalman filter do not take into account other behavioral states such as muscular activity or the subject's level of attention, which are often unobservable during experiments but may play important roles in characterizing neural controlled hand movement. To address this issue, we depict these unknown states as one multidimensional hidden state in the linear state-space framework. This new model assumes that the observed neural firing rate is directly related to this hidden state. The dynamics of the hand state are also allowed to impact the dynamics of the hidden state, and vice versa. The parameters in the model can be identified by a conventional expectation-maximization algorithm. Since this model still uses the linear Gaussian framework, hand-state decoding can be performed by the efficient Kalman filter algorithm. Experimental results show that this new model provides a more appropriate representation of the neural data and generates more accurate decoding. Furthermore, we have used recently developed computationally efficient methods by incorporating a priori information of the targets of the reaching movement. Our results show that the hidden-state model with target-conditioning further improves decoding accuracy.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 4 )