By Topic

Hindlimb Endpoint Forces Predict Movement Direction Evoked by Intraspinal Microstimulation in Cats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michel A. Lemay ; Coll. of Med., Dept. of Neurobiol. & Anatomy, Drexel Univ., Philadelphia, PA, USA ; Dane Grasse ; Warren M. Grill

We measured the forces produced at the cat's hindpaw by microstimulation of the lumbar spinal cord and the movements resulting from those forces. We also measured the forces and movements produced by co- and sequential activation of two intraspinal sites. Isometric force responses were measured at nine limb configurations with the paw attached to a force transducer. The active forces elicited at different limb configurations were summarized as patterns representing the sagittal plane component of the forces produced at the paw throughout the workspace. The force patterns divided into the same distinct types found with the femur fixed. The responses during simultaneous activation of two spinal sites always resembled the response for activation of one of the two sites, i.e., winner-take-all, and we did not observe vectorial summation of the forces produced by activation of each site individually as reported in chronic spinal animals. The movements produced by activation of each of the sites were consistent with the force orientations, and different movements could be created by varying the sequence of activation of individual sites. Our results highlight the absence of a vectorial summation phenomenon during intraspinal microstimulation in decerebrate animals, and the preservation during movement of the orientation of isometric forces.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:17 ,  Issue: 4 )