By Topic

HermesC: Low-Power Wireless Neural Recording System for Freely Moving Primates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Cynthia A. Chestek ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Vikash Gilja ; Paul Nuyujukian ; Ryan J. Kier
more authors

Neural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal dynamic, everyday environment may be quite different in terms of the neural control of movement. In order to study motor control in a more unconstrained natural setting, we seek to develop an animal model of freely moving humans. Therefore, we have developed and tested HermesC-INI3, a system for recording and wirelessly transmitting neural data from electrode arrays implanted in rhesus macaques who are freely moving. This system is based on the integrated neural interface (INI3) microchip which amplifies, digitizes, and transmits neural data across a ~ 900 MHz wireless channel. The wireless transmission has a range of ~ 4 m in free space. All together this device consumes 15.8 mA and 63.2 mW. On a single 2 A-hr battery pack, this device runs contiguously for approximately six days. The smaller size and power consumption of the custom IC allows for a smaller package (51 times 38 times 38 mm3) than previous primate systems. The HermesC-INI3 system was used to record and telemeter one channel of broadband neural data at 15.7 kSps from a monkey performing routine daily activities in the home cage.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:17 ,  Issue: 4 )