By Topic

Minimax Design of IIR Digital Filters Using SDP Relaxation Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aimin Jiang ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Hon Keung Kwan

This paper presents a new algorithm using semidefinite programming (SDP) relaxation to design infinite impulse response digital filters in the minimax sense. Unlike traditional design algorithms that try to directly minimize the error limit, the proposed algorithm employs a bisection searching procedure to locate the minimum error limit of the approximation error. Given a fixed error limit at each iteration, the SDP relaxation technique is adopted to formulate the design problem in a convex form. In practice, the true minimax design cannot be always obtained. Thus, a regularized feasibility problem is adopted in the bisection searching procedure. The stability of the designed filters can also be guaranteed by adjusting the regularization coefficient. Unlike other sequential design methods, the proposed algorithm tries to find a feasible solution at each iteration of the sequential design procedure within a feasible set defined by the relaxed constraints. This feasible set is not restricted within the neighborhood of a given point obtained from the previous iteration. Thus, the proposed method can avoid being trapped in the locally minimum point. Four examples are presented in this paper to demonstrate the effectiveness of the proposed method.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 2 )