By Topic

Decision Making With an Interpretive Structural Modeling Method Using a DNA-Based Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ikno Kim ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu, Japan ; Junzo Watada

A novel method of interpretive structural modeling (ISM) using a DNA-based algorithm is proposed in this paper. ISM is commonly used when the current technology and its application to business administration, industrial and systems engineering, organizational behavior, etc., concern complicated or problematic issues, or situations among an element set of the given problem context for making decisions. When structuring a problem with a large number of elements in an ISM process, the crossings among elements should be minimized. This computationally complex minimization is NP-complete. The proposed algorithm describes how to calculate complex relations among elements to create a hierarchically restructured digraph. This paper also presents a new approach for applying a biological method to ISM to measure the efficiency of the algorithm in calculating a large number of elements for decision making.

Published in:

IEEE Transactions on NanoBioscience  (Volume:8 ,  Issue: 2 )