By Topic

High-precision current source using low-loss, single-switch, three-phase AC/DC converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pomilio, J.A. ; Sch. of Electr. Eng., Univ. Estadual de Campinas, Sao Paulo, Brazil ; Spiazzi, G.

A three-phase AC/DC converter based on isolated Cuk topology feeding an inductive load is presented. The main goal is to get a compact, highly stable current source to feed an electromagnet. A high power factor is achieved, at constant duty-cycle and switching frequency, by discontinuous input current mode operation. The converter presents a linear relationship between the duty-cycle and the output current, making it easier to design the control system. Additionally the voltage stress on the power transistor is constant and does not depend on the duty-cycle. An auxiliary circuit allows zero voltage turn-off while limiting the over-voltage on the switch produced by the transformer leakage inductance. Pulse-width modulation (PWM) control is used to reduce sensitivity to line disturbances and to eliminate the 300-Hz ripple on the output current. Experimental measurements taken on a 400-W prototype confirm theoretical forecasts

Published in:

Power Electronics, IEEE Transactions on  (Volume:11 ,  Issue: 4 )