By Topic

Shaft Currents in Electric Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alger, P.L. ; General Electric Company ; Samson, H.W

This paper describes the causes of, and remedies for, the existence of ``shaft currents'' or ``bearing currents'' which sometimes flow across the rubbing surfaces of the bearings of electric machinery, thereby gradually damaging the shaft and bearings. Up to the present time the only cause of shaft currents that has attracted any particular attention has been the use of sectionalized stators, and the published discussions have been chiefly confined to synchronous alternators. Fleischman1 and others have shown that sectionalizing causes shaft currents for the reason that the extra reluctance of the joints causes an unequal division of the flux between the clockwise and counter-clockwise paths in the yoke, thus giving a resultant flux linking the shaft. Applying the same method of reasoning used in the case of sectionalizing to the general case of any machine with segmental punchings, the following facts are shown: 1. A principal cause of shaft currents in revolving electric machines is the use of poles and segments in certain ratios. 2. The frequency of the shaft current due to joints in the stator yoke is an odd mnultiple of the frequency of the stator flux, the frequency of the shaft currents due to rotor joints is an odd multiple of the rotor frequency, and these frequency multiples are determined by the ratios of poles to segments. 3. Machines with 4, 8, 16, 24, 32, etc., poles are especially likely to have shaft currents, and machines with 6, 10, 14, 22, etc., poles are relatively immune. 4.

Published in:

American Institute of Electrical Engineers, Transactions of the  (Volume:XLIII )