Cart (Loading....) | Create Account
Close category search window
 

The Pulling into Step of a Salient-Pole Synchronous Motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Edgerton, Harold E. ; Instructor, Massachusetts Institute of Technology, Cambridge, Mass. ; Fourmarier, Paul

A synchronous motor started as an induction motor must pass through an electro-mechanical transient after the field circuit is supplied with electrical excitation in order to change its action from that of an induction motor to that of a synchronous motor. The calculation of this problem has been difficult because the differential equation of motion is of a non-linear type of which no analytical solution has been made. The integraph at the Massachusetts Institute of Technology has given a new and direct method of solving equations of the type encountered in these pulling-into-step transients. In this paper are compiled the results of many integraph solutions which were made after combining the factors that influence the performance of such machines into ratios and relative factors so that the results will apply to all practical cases. From the solutions several generalizations are made which can be directly applied to determine whether or not any type of salient-pole synchronous motor will synchronize properly. These solutions take into account inertia, saliency, incompleteness of amortisseur windings, load, switching angle, and field current, and assume negligible armature resistance, negligible rotor leakage reactance, no saturation, constant load torque near synchronous speed, and negligible electrical transients. Oscillograph tests of a 160-hp. motor and a sample calculation are given.

Published in:

American Institute of Electrical Engineers, Transactions of the  (Volume:50 ,  Issue: 2 )

Date of Publication:

June 1931

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.