By Topic

Energy efficient video compression for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmad, J.J. ; Coll. of Signals, Nat. Univ. of Sci. & Technol. (NUST), Islamabad ; Khan, H.A. ; Khayam, S.A.

Wireless video sensor networks are anticipated to be deployed to monitor remote geographical areas. To save energy in bit transmissions/receptions over a video sensor network, the captured video content needs to be encoded before its transmission to the base station. However, video encoding is an inherently complex operation that can cause a major energy drain at battery-constrained sensors. Thus a systematic evaluation of different video encoding options is required to allow a designer to choose the most energy-efficient compression technique for a given video sensing application scenario. In this paper, we empirically evaluate the energy efficiencies of predictive and distributed video coding paradigms for deployment on real-life sensor motes. For predictive video coding, our results show that despite its higher compression efficiency, inter video coding always depletes much more energy than intra coding. Therefore, we propose to use image compression based intra coding to improve energy efficiency in the predictive video coding paradigm. For distributed video coding, our results show that the Wyner-Ziv encoder has consistently better energy efficiency than the PRISM encoder. We propose minor modifications to PRISM and Wyner-Ziv encoders which significantly reduce the energy consumption of these encoders. For all the video encoding configurations evaluated in this paper, our results reveal the counter-intuitive and important finding that the major source of energy drain in WSNs is local computations performed for video compression and not video transmission.

Published in:

Information Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on

Date of Conference:

18-20 March 2009