By Topic

Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carrillo, Rafael E. ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE ; Barner, K.E.

Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.

Published in:

Information Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on

Date of Conference:

18-20 March 2009