By Topic

New medical image sequences segmentation based on level set method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xujia Qin ; Coll. of Software, Zhejiang Univ. of Technol., Hangzhou ; Suqiong Zhang

Image segmentation is one of the key problems in medical image processing. The level set method based on curves evolving theory and partial differential equation theory is widely applied in the segmentation of medical image. The level set method can handle topology changes effectively. In this paper, a penalized energy is added into the geodesic active contour (GAC) model and the C_V model respectively to eliminate the re-initialization procedure completely. Then, a term of boundary information is added into the C_V model to incorporate regional and gradient information together for better segmentation. The segmentation for medical image sequence which is implemented in this paper is the necessary preparation for 3D reconstruction later on. The obtained results have shown desirable segmentation performance.

Published in:

Image Analysis and Signal Processing, 2009. IASP 2009. International Conference on

Date of Conference:

11-12 April 2009