Cart (Loading....) | Create Account
Close category search window

Optimization and improvement of Genetic Algorithms solving Traveling Salesman Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liping Zhang ; Coll. of Comput. Sci., Zhejiang Univ., Hangzhou ; Min Yao ; Nenggan Zheng

Traveling salesman problem (TSP) is a typical NP-complete problem, of which the search space increases with the number of cities. Genetic algorithm (GA) is an efficient optimization algorithm characterized with explicit parallelism and robustness, applicable to TSP. In this paper, we compare the performance of the existing GAs in searching the solution for TSP and find a superior combination of crossover and mutation method. Then, the improvements in the cycle crossover and greedy cross-cycle crossover are proposed. Finallyl experimental results show that the new cycle crossover and greedy crossover algorithms perform much better than the original ones.

Published in:

Image Analysis and Signal Processing, 2009. IASP 2009. International Conference on

Date of Conference:

11-12 April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.