Cart (Loading....) | Create Account
Close category search window
 

X-ray scattering study of the interactions between magnetic nanoparticles and living cell membranes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Koh, Isaac ; Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742 ; Cipriano, Bani H. ; Ehrman, Sheryl H. ; Williams, Darryl N.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1868053 

Magnetic nanoparticles (MNPs) have found increased applicability in drug delivery, cancer treatment, and immunoassays. There is a need for an improved understanding of how MNPs interact with living cell membranes in applied magnetic fields to use them effectively. The interactions between Escherichia coli (E. coli) and SiO2/γ-Fe2O3 composite particles in magnetic fields were studied using x-ray scattering. Magnetic field strengths up to 423 mT were applied to the samples to see the effects of the magnetic fields on the E. coli membranes in the presence of the magnetic particles in the cell cultures. X-ray scattering results from continuous cultures of E. coli showed two peaks, a sharp peak at q=0.528 Å-1 (1.189 nm) up to 362 mT of magnetic field strength and a diffuse one at q=0.612 Å-1 (1.027 nm). The sharp peak was shifted to the smaller side of q when magnetic particles were added and the magnitude of the applied magnetic field strength was increased from 227 to 298 mT, to 362 mT, whereas the diffuse peak did not changed. A critical magnetic field strength where the sharp peak disappears was found at 362 mT.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 8 )

Date of Publication:

Apr 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.