Cart (Loading....) | Create Account
Close category search window
 

Co-doped anatase TiO2 heteroepitaxy on Si(001)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kaspar, T.C. ; Pacific Northwest National Laboratory, Richland, Washington 99352 ; Droubay, T. ; Wang, C.M. ; Heald, S.M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1868854 

Pure anatase TiO2 and CoxTi1-xO2 (0.01≪x≪0.04) epitaxial thin films were deposited by oxygen-plasma-assisted molecular beam epitaxy on Si(001) for evaluation as a potential dilute magnetic semiconductor material suitable for Si-based spintronic devices. Epitaxial growth on Si(001) was facilitated by the deposition of 1/4 or 1/2 ML Sr metal on the clean Si(001) surface to form an oxidation resistant silicide layer, followed by deposition of a thin SrTiO3 buffer layer. Using 1/2 ML Sr metal to form the silicide allowed the deposition of 10 ML SrTiO3 without oxidation of the Si interface. Epitaxial anatase could be grown on this heterostructure, although use of the oxygen plasma during deposition resulted in significant SiO2 formation. Pure anatase films consisted of epitaxial anatase surface particles on a continuous anatase film. For Co-doped films, Co segregation to surface particles of epitaxial anatase was observed by Auger electron spectroscopy and transmission electron microscopy (TEM); faceting of the particles was observed for low Co doping concentrations. Although no secondary phases containing Co were observed in Co-doped anatase films by x-ray diffraction or TEM, x-ray absorption near edge spectroscopy indicated Co was present in the films as a mixture of Co(0), Co(II), and Co(III). All samples were ferromagnetic at room temperature; for lower Co concentrations, the ferromagnetic remanence (9%) and coercive field (100 Oe) were similar to phase-pure Co:TiO2/LaAlO3. However, the presence of Co(0) under strongly oxidizing growth conditions known to oxidize the Si interface implies that under no deposition conditions can Co metal be eliminated while simultaneously protecting the Si interface from oxidation.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 7 )

Date of Publication:

Apr 2005
IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.