By Topic

Optical and morphological study of disorder in opals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Palacios-Lidon, E. ; Instituto de Ciencia de Materiales de Madrid, (CSIC) Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain ; Juarez, B.H. ; Castillo-Martinez, E. ; Lopez, C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1851014 

An optical and morphological study has been carried out to understand the role of intrinsic defects in the optical properties of opal-based photonic crystals. By doping poly(methylmethacrylate) (PMMA) thin-film opals with larger polystyrene (PS) spheres, structural disorder has being generated perturbing the PMMA matrix periodicity. It is shown that this disorder dramatically affects the optical response of the system worsening its photonic properties. It has been found that the effect of doping is highly dependent not only on the concentration but also on the relative size of the dopant with reference to the matrix. Through a detailed scanning electron microscopy inspection, the sort of structural defects involved, derived from the different particle size used, has been characterized. A direct relationship between the observed optical response with the different perturbations generated in the lattice has been found. In addition, from this study it can be concluded that it is possible to grow high quality alloyed photonic crystals, exhibiting intermediate photonic properties between pure PMMA and pure PS opals by simple sphere size matching and variation of the relative concentration of both components.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 6 )