Cart (Loading....) | Create Account
Close category search window

Model for the elastic behavior near intermartensitic transitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dai, Liyang ; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 ; Cullen, James ; Wuttig, Manfred

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Transitions between different martensitic states have been observed in Ni0.50Mn0.284Ga0.216 using elastic constant measurements. In this paper, we develop a model to explain the reentrant behavior based on a Landau expansion of the free energy in strain space. Here, we assume that the coefficient of the third-order term as well as the second-order term has significant temperature dependence. This assumption results in a C versus temperature in good agreement with observation. The model and possible modifications to it are discussed and compared to the elastic constant data.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 10 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.