Cart (Loading....) | Create Account
Close category search window

The effect of autocorrelation length on the real area of contact and friction behavior of rough surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, Yilei ; Mechanical Engineering Department, Iowa State University, Ames, Iowa 50011 ; Sundararajan, Sriram

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Autocorrelation length (ACL) is a surface roughness parameter that provides spatial information of surface topography that is not included in amplitude parameters such as root-mean-square roughness. This paper presents a relationship between ACL and the friction behavior of a rough surface. The influence of ACL on the peak distribution of a profile is studied based on Whitehouse and Archard’s classical analysis [ and Proc. R. Soc. London, Ser. A 316, 97 (1970)] and their results are extended to compare profiles from different surfaces. The probability density function of peaks and the mean peak height of a profile are given as functions of its ACL. These results are used to estimate the number of contact points when a rough surface comes into contact with a flat surface, and it is shown that the larger the ACL of the rough surface, the less the number of contact points. Based on Hertzian contact mechanics, it is shown that the real area of contact increases with increasing of number of contact points. Since adhesive friction force is proportional to the real area of contact, this suggests that the adhesive friction behavior of a surface will be inversely proportional to its ACL. Results from microscale friction experiments on polished and etched silicon surfaces are presented to verify the analysis.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 10 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.