Cart (Loading....) | Create Account
Close category search window
 

Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boeuf, J.P. ; Centre de Physique des Plasmas et Applications de Toulouse (CPAT), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex, France ; Pitchford, L.C.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1901841 

Surface discharges created in dielectric barrier discharge (DBD) configurations have been proposed as actuators for flow control in aerodynamic applications. We focus on DBDs operating in a glow regime, i.e., where the discharge is sustained by ion-induced secondary electron emission from the surface and volume ionization. After a brief discussion of the force per unit volume acting on the flow and due to the momentum transfer from charged particles to neutral molecules, we present calculations of this force based on a two-dimensional fluid model of the surface discharge. We show that this force is of the same nature as the electric wind in a corona discharge. However, the force in a DBD is localized in the cathode sheath region of the discharge expanding along the dielectric surface. While its intensity is much larger than the analogous force in a direct-current corona discharge, it is active during less than one hundred nanoseconds for each discharge pulse and the time-averaged forces in the two cases are comparable, at least for the conditions we have chosen for this study.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 10 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.