By Topic

Activation and deactivation in heavily boron-doped silicon using ultra-low-energy ion implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong, Won-Eui ; Department of Materials Science and Engineering, Hongik University, Seoul 121-791, Korea ; Jae-Sang Ro

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1823576 

A shallow p+/n junction was formed using an ultra-low-energy implanter. Activation annealing exhibited both solid phase epitaxy, in which the sheet resistance dropped rapidly, and reverse annealing. Deactivation phenomena were investigated for the shallow source/drain junction based on measurements of the postannealing time and temperature following the rapid thermal annealing treatments. We found that the deactivation kinetics were divided into two regions. In the first region the rate of deactivation increased exponentially with the annealing temperature of up to 850 °C. In the second region it decreased as the annealing temperature exceeded 850 °C. We believe that the first region is kinetically limited while the second one is thermodynamically limited. In addition, we observed “transient enhanced deactivation,” an anomalous increase in the sheet resistance during the early annealing stage where the the temperatures were higher than 800 °C. The activation energy for transient enhanced deactivation was measured to be between 1.75 and 1.87 eV, while that for normal deactivation was between 3.49 and 3.69 eV.

Published in:

Journal of Applied Physics  (Volume:97 ,  Issue: 1 )