By Topic

Damage accumulation in Si during high-dose self-ion implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhong, Y. ; Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 ; Bailat, C. ; Averback, R.S. ; Ghose, S.K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Accumulation and annealing of damage in Si implanted with self-ions to high doses were investigated using a combination of grazing incidence diffuse x-ray scattering, high-resolution x-ray diffraction scans, and transmission electron microscopy. During implantation at 100°C, small vacancy and interstitial clusters formed at low doses, but their concentrations saturated after a dose of ≈3×1014 cm-2. The concentration of Frenkel defects at this stage of the implantation was ≈1×10-3. At doses above 1×1015 cm-2, the concentration of implanted interstitial atoms began to exceed the Frenkel pair concentration, causing the interstitial clusters to grow, and by ≈3×1015 cm-2, these clusters formed dislocation loops. Kinematical analysis of the rocking curves illustrated that at doses above 1×1015 cm-2 the “plus one” model was well obeyed, with one interstitial atom being added to the dislocation loops for every implanted Si atom. Measurements of Huang scattering during isochronal annealing showed that annealing was substantial below 700°C for the specimens irradiated to lower doses, but that little annealing occurred in the other samples owing to the large imbalance between interstitial and vacancy defects. Between 700 and 900°C a large increase in the size of the interstitial clusters was observed, particularly in the low-dose samples. Above 900°C, the interstitial clusters annealed.

Published in:

Journal of Applied Physics  (Volume:96 ,  Issue: 3 )