By Topic

Multiple-antenna techniques for wireless communications - a comprehensive literature survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mietzner, J. ; Dept. of Electr. & Comp. Eng., Univ. of British Columbia, Vancouver, BC ; Schober, R. ; Lampe, L. ; Gerstacker, W.H.
more authors

The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last decade - both in academia and industry. Multiple antennas can be utilized in order to accomplish a multiplexing gain, a diversity gain, or an antenna gain, thus enhancing the bit rate, the error performance, or the signal-to-noise-plus-interference ratio of wireless systems, respectively. With an enormous amount of yearly publications, the field of multiple-antenna systems, often called multiple-input multiple-output (MIMO) systems, has evolved rapidly. To date, there are numerous papers on the performance limits of MIMO systems, and an abundance of transmitter and receiver concepts has been proposed. The objective of this literature survey is to provide non-specialists working in the general area of digital communications with a comprehensive overview of this exciting research field. To this end, the last ten years of research efforts are recapitulated, with focus on spatial multiplexing and spatial diversity techniques. In particular, topics such as transmitter and receiver structures, channel coding, MIMO techniques for frequency-selective fading channels, diversity reception and space-time coding techniques, differential and non-coherent schemes, beamforming techniques and closed-loop MIMO techniques, cooperative diversity schemes, as well as practical aspects influencing the performance of multiple-antenna systems are addressed. Although the list of references is certainly not intended to be exhaustive, the publications cited will serve as a good starting point for further reading.

Published in:

Communications Surveys & Tutorials, IEEE  (Volume:11 ,  Issue: 2 )