By Topic

Analysis of convergence properties of a stochastic evolution algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Yu Mao ; Cadence Design Syst. Inc., San Jose, CA, USA ; Yu Hen Hu

In this paper, the convergence properties of a stochastic optimization algorithm called the stochastic evolution (SE) algorithm is analyzed. We show that a generic formulation of the SE algorithm can be modeled by an ergodic Markov chain. As such, the global convergence of the SE algorithm is established as the state transition from any initial state to the globally optimal states. We propose a new criterion called the mean first visit time (MFVT) to characterize the convergence rate of the SE algorithm. With MFVT, we are able to show analytically that on average, the SE algorithm converges faster than the random search method to the globally optimal states. This result Is further confirmed using the Monte Carlo simulation

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:15 ,  Issue: 7 )