Cart (Loading....) | Create Account
Close category search window

Continuous-wave operation of AlGaInP/GaInP quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Dong, Jian-Rong ; Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore ; Teng, Jing-Hua ; Chua, Soo-Jin ; Foo, Boon-Chin
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Strained AlGaInP/GaInP multiple-quantum-well laser structures have been grown by metalorganic chemical vapor deposition using teriarybutylphosphine as the phosphorus precursor and ridge waveguide lasers of 4 μm wide have been fabricated. Room temperature continuous-wave lasing has been obtained with an emission wavelength of about 670 nm. A single-facet output power of more than 18 mW has been achieved for an as-cleaved laser chip. It can be concluded that it is feasible to fabricate AlGaInP red lasers using less toxic metalorganic source tertiarybutylphosphine in parallel with conventionally used highly toxic PH3. © 2004 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:95 ,  Issue: 9 )

Date of Publication:

May 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.