By Topic

Extraction of high-resolution frames from video sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schultz, R.R. ; Dept. of Electr. Eng., North Dakota Univ., Grand Forks, ND, USA ; Stevenson, R.L.

The human visual system appears to be capable of temporally integrating information in a video sequence in such a way that the perceived spatial resolution of a sequence appears much higher than the spatial resolution of an individual frame. While the mechanisms in the human visual system that do this are unknown, the effect is not too surprising given that temporally adjacent frames in a video sequence contain slightly different, but unique, information. This paper addresses the use of both the spatial and temporal information present in a short image sequence to create a single high-resolution video frame. A novel observation model based on motion compensated subsampling is proposed for a video sequence. Since the reconstruction problem is ill-posed, Bayesian restoration with a discontinuity-preserving prior image model is used to extract a high-resolution video still given a short low-resolution sequence. Estimates computed from a low-resolution image sequence containing a subpixel camera pan show dramatic visual and quantitative improvements over bilinear, cubic B-spline, and Bayesian single frame interpolations. Visual and quantitative improvements are also shown for an image sequence containing objects moving with independent trajectories. Finally, the video frame extraction algorithm is used for the motion-compensated scan conversion of interlaced video data, with a visual comparison to the resolution enhancement obtained from progressively scanned frames

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 6 )